Primer día Nivel Menor 23 de Noviembre

Problema 1. Considere un triángulo cuyos lados miden $1, r y r^2$. Determine todos los valores de r de manera tal que el triángulo sea rectángulo.

Problema 2. Considere tres puntos en el interior de un cuadrado de lado 1. Demuestre que el área del triángulo que forman es menor o igual a $\frac{1}{2}$.

Problema 3. Encuentre todos los valores enteros positivos de a,b que verifican la ecuación

$$\sqrt{a} + \sqrt{b} = \sqrt{2009}.$$

Segundo día Nivel Menor 24 de Noviembre

Problema 4. Sobre la base AC de un triángulo isósceles ABC, se toma un punto M, de manera que |AM| = p y |MC| = q. Se trazan las circunferencias inscritas a los triángulos AMB y CMB, que son tangentes al lado BM en los puntos R y S respectivamente. Hallar la distancia entre R y S.

Problema 5. Encuentre un número entero positivo x > 1 tal que todos los números de la sucesión

$$x+1, x^x+1, x^{x^x}+1, \dots$$

sean divisibles por 2009.

Problema 6. Encuentre el menor valor de n tal que 2009 se escriba como suma de n cubos de enteros positivos.

Primer día Nivel Mayor 23 de Noviembre

Problema 1. Considere 9 puntos en el interior de un cuadrado de lado 1. Pruebe que hay tres de ellos que forman un triángulo de área menor o igual a $\frac{1}{8}$.

Problema 2. Encuentre la diferencia entre las longitudes de la mayor y la menor diagonal de un polígono regular de 9 lados y cuyo lado mide 1.

Problema 3. Sea

$$S = \frac{1}{a_1} + \frac{2}{a_2} + \ldots + \frac{100}{a_{100}}$$

donde a_1,a_2,\dots,a_{100} son números enteros positivos. ¿ Cuáles son todos los posibles valores enteros que puede tomar S ?

Segundo día Nivel Mayor 24 de Noviembre

Problema 4. Encuentre un entero positivo x>1 tal que todos los números de la sucesión

$$x+1, x^x+1, x^{x^x}+1, \dots$$

sean divisibles por 2009.

Problema 5. Sean A y B dos cubos. Se asignan los números $1, 2, \ldots, 14$, en cualquier orden, a las caras y a los vértices del cubo A. Luego se asigna a cada arista del cubo A el promedio de los números asignados a las dos caras que la contienen. Finalmente se asigna a cada cara del cubo B la suma de los números asociados a los vértices, la cara y las aristas en la cara correspondiente del cubo A. Si S es la suma de los números asignados a las caras de B, encuentre el máximo y mínimo valor que puede tomar S.

Problema 6. Se tienen $n \ge 6$ puntos verdes en el plano, tal que no hay 3 de ellos colineales. Suponga además que 6 de estos puntos son los vértices de un hexágono convexo. Demuestre que existen 5 puntos verdes que forman un pentágono que no contiene ningún otro punto verde en su interior.